
The Compass Alliance Pathways: Programming 
 
This pathway will cover the basics of programming in FRC. It will focus on text-based 
languages (such as C++ or Java/Kotlin), although the vast majority of the concepts discussed 
have their counterparts in LabVIEW. 
 
Level One: Getting Your Robot Up and Running 
 

1. Picking a Programming Language: Java, C++, or LabVIEW 
- Java​ is a textual language that is very commonly taught at high schools and is 

used for the AP CS exams. It is a “safe” language in that runs in its own virtual 
environment. Unfortunately, this virtual environment, also known as the JVM, 
means that Java programs are noticeably slower than their lower-level 
counterparts (like C++) when used for highly intensive tasks. Java is used 
primarily because of its ease of use, and cross-compatibility. Teams that use 
Java include ​254​,​ ​125​,​ ​503​,​ ​4911​, and​ ​1241​. 

- C++​ is a very fast textual programming language. It is used in industry for real 
time systems because of its efficiency, but the learning curve is often much 
steeper than Java. C++ is also riddled with unusual, or undefined behavior, which 
can often be difficult for new teams to debug. Many FRC teams use it simply 
because of its speed, as well as its extensive mathematical libraries. Teams that 
use C++ include​ ​971​ and​ ​1678​. 

- Unlike Java and C++, ​LabVIEW​ is a graphical programming language developed 
by NI. The programming languages used for FLL are derivatives of LabVIEW, so 
students coming from Lego programs may be more comfortable starting off with 
this. Additionally, NI provides extensive debugging tools for Labview. However, 
LabVIEW comes with its own steep learning curve, due to its dependency 
systems, odd graphical interface, unneeded verbosity, and slowness. Teams that 
use Labview include​ ​624​. 

- Choosing what language always depends on what is easiest for ​your​ team. 
For example, it can often make sense to use C++ simply because one of your 
programming mentors knows C++. On the other hand, it might make sense to 
use Java because it is easiest to learn without the help of a mentor. No matter 
what your decision, remember that the choice of programming language is 
specific to the working environment and people of your team. 

2. Teaching the Programming Language 
- When teaching programming for FRC, there are two distinct subjects that need to 

be taught. The first is the semantics and syntax of the programming language 
itself, and the second is interfacing with FRC components. A guide on learning 
the C++ language can be found ​here​, Java ​here​, and LabVIEW ​here​. 
 

 

https://github.com/Team254
https://github.com/FRC125
https://github.com/FRC125
https://github.com/FF503/2017Robot
https://github.com/FF503/2017Robot
https://github.com/frc4911/2017SteamWorksRobot
https://github.com/frc4911/2017SteamWorksRobot
https://github.com/RickHansenRobotics/FRC-2016-1241-SH
https://github.com/RickHansenRobotics/FRC-2016-1241-SH
http://frc971.org/content/getting-started-c-and-frc-programming
http://frc971.org/content/getting-started-c-and-frc-programming
https://github.com/frc1678/robot-code-public
https://github.com/frc1678/robot-code-public
https://github.com/Team624/2016Robot
https://github.com/Team624/2016Robot
https://www.learncpp.com/
https://www.codecademy.com/learn/learn-java
http://www.ni.com/academic/students/learn-labview/


3. Picking a robot class 
- There are four different “classes” that can be used when interfacing with the 

Robot. A comparison of these classes, and what they mean can be found ​here​. 
4. Once your team has picked a programming language and a robot class, the WPI 

Screen Steps are a good resource on how to set up your development 
environment and easily get code onto your robot. These guides are invaluable for 
FRC programming. 

- Java 
- C++ 
- The official 2019 build season uses gradleRIO and the VSCode editor with the 

WPILib plugin. More information can be found ​here​. GradleRIO, and a guide to 
set it up can be found ​here​. The remainder of this guide will be easier to follow 
with a gradleRIO setup. 

5. Getting code onto your robot! 
- If using gradleRIO, just type ​./gradlew deploy​, and your code will be on the 

robot. 
- But wait! Your code doesn’t ​do​ anything yet. Some simple examples for drive 

code can be found ​here​ for Java, and ​here​ for C++. The code in the snippets 
belong in either ​Robot.java​, or ​Robot.cpp​, which should be auto-created with 
the gradle/Eclipse project. 

6. Code for mechanisms 
- Simple drive code can be directly copy-pasted for Java/C++ from ​here​. 
- Most FRC robots have actuated mechanisms other than the drivetrain. This 

could be anything from a spinning flywheel to a pneumatic catapult. All these 
mechanisms should be controllable in autonomous, or in teleop. To mechanisms 
using speed controllers over PWM, there is a guide for C++ and Java ​here​. 

- If using speed controllers over CAN, you must either follow the guide ​here​ to 
treat them as PWM speed controllers, or use the Phoenix API, whose 
documentation is linked ​here​. 

7. Autonomous 
- A guide for how to do autonomous actions in FRC programming can be found 

here​. 
- Team 1619 has also compiled some simple code to cross the auto line in Java, 

which can be found ​here​. 
 
Level Two: Custom Architecture, and Closed-loop Motor Control 
 

1. Using a custom architecture 
- Many times, the available robot classes are not enough. For example, you might 

want to run teleop periodically, and autonomous sequentially. If this is the case, 
it is likely time to move to a custom architecture. 

- A custom architecture is essentially structuring all the code in a customised way. 

http://wpilib.screenstepslive.com/s/currentCS/m/cpp/l/241853-choosing-a-base-class
http://wpilib.screenstepslive.com/s/currentCS/m/java
http://wpilib.screenstepslive.com/s/currentCS/m/cpp
https://wpilib.screenstepslive.com/s/currentCS/m/79833/c/259485
https://github.com/wpilibsuite/GradleRIO
http://wpilib.screenstepslive.com/s/currentCS/m/java/l/145307-creating-your-benchtop-test-program
http://wpilib.screenstepslive.com/s/currentCS/m/cpp/l/145319-creating-your-benchtop-test-program
http://wpilib.screenstepslive.com/s/currentCS/m/cpp/l/913461-driving-a-robot-using-differential-drive
https://wpilib.screenstepslive.com/s/currentCS/m/cpp/l/241859-driving-motors-with-speed-controller-objects-victors-talons-and-jaguars
https://github.com/CrossTheRoadElec/Phoenix-Documentation#wpilib-javac
https://github.com/CrossTheRoadElec/Phoenix-Documentation
http://wpilib.screenstepslive.com/s/currentCS/m/cpp/l/241905-running-commands-during-the-autonomous-period
https://github.com/Team1619/project-line-cross


- Some examples of custom architectures include 1678’s code which is ​here​. 
1678’s code builds off of 971’s code which is ​here​. 

- 254 also has a custom architecture. Their 2018 code can be found ​here​. 
2. PID Control 

- PID Control allows you to control a mechanism based on position, rather than 
voltage. Using PID, you can tell an arm to turn to 30 degrees, instead of telling it 
to directly output a voltage. This is especially useful in autonomous. Being able 
to tell a robot to drive 5 metres instead of full power for 0.5 seconds allows for 
enhanced repeatability. 

- Some useful documents for PID are: 
- Wesley’s Blog 
- CSIM’s PID for Dummies 

3. Motion Magic (CAN Only) 
- If using a TalonSRX speed controller, it is recommended to use MotionMagic for 

controlling mechanisms, especially something like an arm or an elevator. 
MotionMagic is essentially a 1KHz PID loop following autogenerated trapezoidal 
motion profiles. If those words make no sense, don’t worry! See the above for 
information on PID, and ​here’s​ a document explaining motion profiles. 

- The documentation for Motion Magic is located ​here​. 
 
Level Three: Advanced Drive Paths, MP Control, and Unit-testing 
 

1. Drive paths and following them 
- Sometimes raw PID isn’t enough for controlling the drivetrain autonomously. For 

example, you might want the robot to go around the switch and pick up a cube 
from behind. A clean way to do this would be to create a drive path. A drive path 
is essentially a set of points that the drivetrain PID loop will follow, and the 
points will lead to the eventual goal. Jaci from WPILib has created a tool called 
PathFinder which generates such paths and saves them to a parsable file, which 
can be found ​here​. 

- Once the points have been generated, there are a variety of ways to follow them. 
These range from using PID to directly follow the points, to adding a path 
following algorithm to process the points before giving them to the PID loop. An 
example of such a path following algorithm can be found ​here​ (eqn 5.12). 

2. Model based control 
- Model based control is a step beyond PID. It allows for keeping a mathematical 

model of the system in the code, and updating the model with sensor data. 
Using such a model, one can control a mechanism’s position, velocity, 
acceleration, etc much more precisely. Some teams that use model based 
control include 1678 and 971. 

- Useful resources for learning model-based control are: 
- Wesley’s Blog 

https://github.com/frc1678/robot-code-public
http://frc971.org/content/2017-software
https://github.com/Team254/FRC-2018-Public
http://blog.wesleyac.com/posts/intro-to-control-part-one-pid
https://www.csimn.com/CSI_pages/PIDforDummies.html
https://www.machinedesign.com/motion-control/mastering-motion-profiles
https://github.com/CrossTheRoadElec/Phoenix-Documentation/blob/master/Talon%20SRX%20Victor%20SPX%20-%20Software%20Reference%20Manual.pdf
https://github.com/JacisNonsense/Pathfinder
https://www.dis.uniroma1.it/~labrob/pub/papers/Ramsete01.pdf
http://blog.wesleyac.com/posts/intro-to-control-part-four-state-space


- This MIT handout 
 

3. Unit-testing 
- Often-times, you want to test your code before deploying it on the robot. This 

can prevent disaster. Unit-testing is a term for testing portions of the code as 
standalone programs. For example, you might want to test the portion of the 
code that runs the elevator, but not the part that makes a few lights flash. 
Testing mechanisms for FRC is greatly enhanced with model based control, as 
the model can be used as a simulation of the mechanism, meaning that the 
whole mechanism can be tested with incredible robustness. Some useful unit 
testing libraries include: 

- GoogleTest 
 

 
   

http://web.mit.edu/2.14/www/Handouts/StateSpace.pdf
https://github.com/google/googletest


Appendix A - Revision History 
 

Revision #  Revision Date  Revision Notes 

1.0  Sept. 2018  Initial Release 

     

     

     

 
 


